Total Pages: 8

AB-233676

M.Sc. (Semester-II) Examination, June-2025

(Regular / Backlog)

CHEMISTRY

[Paper : Second]

(Theory and Application of Spectroscopy)

Time Allowed: Three Hours

Maximum Marks: 70

Note: This question paper is divided into four sections.

Attempt questions from all sections as per given direction. Distribution of marks is given in each section.

SECTION-A

(Objective Type Questions)

AB-233676/640

(1)

[P.T.O.]

Note: Attempt any ten questions. Each question carries 1 mark. $[10 \times 1 = 10]$

- 1. (A) Multiple choice questions:
 - (i) Identify the type of transition in crotonaldehyde at $\lambda_{max} 214$ nm and $\in -15850$:
 - (a) $n \to \pi^*$, R band
 - (b) $\pi \to \pi^*$, K-band
 - (c) $n \rightarrow 6^*$, B-band
 - (d) $n \to \pi$, B-band
 - (ii) Electronic excitations occur in the range from:
 - (a) 200 to 780 nm
 - (b) 220 to 500 nm
 - (c) 250 to 700 nm
 - (d) 290 to 1000 nm

AB-233676/640 (2)

- (iii) Total number of vibrations in allyl bromide, CH₂ = CHCH₂Br are:
 - (a) 18
 - (b) 21
 - (c) 14
 - (d) 16
- (iv) The vibrations without a centre of symmetry are, active in:
 - (a) Infrared but inactive in Raman
 - (b) Raman but inactive in IR
 - (c) Raman and IR
 - (d) None of the above
- (v) A high resolution mass spectrophotometer is required for :
 - (a) $C_2H_4^+$, CH_2N^+
 - (p) CO₊
 - (c) N_2^+
 - (d) All of the above

AB-233676/640

(3)

[P.T.O.]

(vi)	C ¹³ was first studied in 1957 by:	
	(a) P.C. Lawberbur	
	(b) Hansen	
	(c) Packard	
	(d) Purcell	
Fill in	Fill in the blanks:	
(vii)	The intensity of light absorbed by a sample in UV-visible spectroscopy is directly related to its	
(viii)	Ais a device that allow you to select a specific wavelength of light to measure absorbance.	
(ix)	The Fingerprint region of an IR spectrum is located in the range of	
(x)	The absorption of IR radiation by a molecule causes its atoms toat specific frequencies.	

(4)

(B)

AB-233676/640

- (xi) Different functional groups have characteristics absorption.....in the IR spectrum.
- (xii) The most intense peak in mass spectrum is known as

SECTION-B

(Very Short Answer Type Questions)

Note: Attempt any five questions. Each question carries 2 marks. (Maximum word limit 25-30 words) [5×2=10]

- 2. (i) Why is ethanol a good solvent in ultravoilet spectroscopy?
 - (ii) Amines absorb at higher wavelength than alcohols, why?
 - (iii) Name the lines arising from $\Delta J = -2, -1, 0, +1 \text{ and } +2.$
 - (iv) C^{13} is NMR active while e^{12} is not? Explain.
 - (v) Why greater sensitivity is required to record C¹³ NMR spectra compared to that of PMR spectra?

AB-233676/640 (5)

[P.T.O.]

- (vi) Identify the amide which gives a strong peak at m/e-44.
- (vii) Identify signals in NMR spectrum of ETHYL BROMIDE.

SECTION-C

(Short Answer Type Questions)

Note: Attempt any five questions. Each question carries 4 marks.(Maximum word limit 250 words) [5×4=20]

- 3. Explain the following:
 - (i) Lambert-Beer's law.
 - (ii) Solvent effects on electronic transitions.
 - (iii) Factors influencing vibrational frequencies with special reference to IR spectroscopy.
 - (iv) Factors affecting Vicinal Coupling.
 - (v) Coupling constant.
 - (vi) Applications of mass spectroscopy.
 - (vii) McLafferty Rearrangement Law.

AB-233676/640 (6)

SECTION-D

(Essay Type Questions)

Note: Attempt any three questions. Each question carries 10 marks. (Word limit 500 words) [3×10=30]

- (i) What is NMR spectroscopy? Discuss its theory
 in detail and its applications in medical
 diagnostics.
 - (ii) Discuss the basic principle, instrumentation and applications of IR spectroscopy.
 - (iii) Explain the basic theory and instrumentation of mass spectroscopy. Discuss the factors affecting fragmentation.
 - (iv) Explain Woodwards-Fieser rules for conjugated dienes and carbonyl compounds with examples.

AB-233676/640 (7)